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Introduction: Pre-sizing problem

Aeronautical structures 

are mainly made of 

stiffened panels enforced 

with stiffeners

Define Super Stiffeners as the 

theoretical union of a stringer 

and two half panels
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Introduction: Pre-sizing problem

Super Stiffeners are

subject to highly non-linear

phenomena such as

buckling, collapse and

damage tolerance

To determine the optimal size of these super stiffeners,

static mechanical criteria must be computed using

dedicated software that is based on non-linear

calculation
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Introduction: Optimization

The analysis and the dimension estimation of 
the whole structure is currently computed by 
running a two-level study: 

• global level: Finite 

Element (FE) analysis run 

on the whole FE model 

provides internal loads, 

applied to each S-Stiffener

• local level: these loads are 

used to compute static 

mechanical criteria
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Introduction: Optimization

 Most of static mechanics criteria are 
formulated using Reserve Factors (RF): a structure 
is validated provided all its RFs are greater than 
one. 

 Optimization problem is to minimize weight 
under constraints on geometry and RFs
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Motivation: computational burden

The dimension estimation step in an aircraft development
program is a repetitive, time-consuming process:

• Huge dimensionality of the problem (O(103) variables and O(105) 
constraints)

• Optimization methods require gradients of the constraint functions, 
which can only be obtained by finite differences

• Values of mechanical strength constraints are computed using 
dedicated software

• Each of numerous calls to this software takes up to 1 sec

The need for finite difference calculations in each of 

numerous local optimizations greatly increases the time 

between two update steps of optimization
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Solution: Use of Surrogate Models 
(Response Surface Models)

 Expected benefits of surrogate models use:

• time saving in pre-sizing processes

• response smoothing
RFs are sometimes are not themselves continuous (as

often for semi-empirical approaches)

BUT

Surrogate Models (SMs) may provide a continuous and

differentiable approximation
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Solution: Use of Surrogate Models 
(Response Surface Models)

 Expected benefits of surrogate models use:

• time saving in pre-sizing processes

• response smoothing
RFs are sometimes are not themselves continuous (as

often for semi-empirical approaches)

BUT

Surrogate Models (SMs) may provide a continuous and

differentiable approximation

=> calculation of gradients directly instead of using

costly finite differences
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Examples of Surrogate Modeling Applications

 Problem 1: Surrogate Optimization of Wing Covers

 Problem 2: Surrogate Modeling of Thin Composite Plates
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Examples of Surrogate Modeling Applications

 Problem 1: Surrogate Optimization of Wing Covers

 Problem 2: Surrogate Modeling of Thin Composite Plates
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Design Variables and Criteria

Design variables

h
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Different 

Stringer 

Geometries

Skin angle thicknesses   / stringer section parameters

Design criteria (calculated by Airbus in-house software)
- stability: Rayleigh Ritz approach & Karman theory for post-buckling
- damage tolerance
- reparability: bearing, by-pass

All composite design variables and criteria are considered
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Construct such Y = Fapprox(X) 

that

Fapprox(X) ≈ F(X)

Y = F(X) – simulates behaviour

relationship between X and Y

Original model

DoE   Data Base

(Xi, Yi=F(Xi)), i = 1,…,N –

training data set

In the considered case:

 X is composed of 
• Skin thickness,

• Percentages of standard 

draping angles 0%, 45%, 90%, 

• T-stringer core and web 

percentages 0%, 45%, 90%,

• etc. (> 20 parameters)

 F(X) is realized by 

Airbus in-house skill-tool

 Y = F(X) is composed 

of various Reserve Factors 

(>20 RFs)

Surrogate Models (Response Surface Models)
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• nonlinear multivariate functions (> 20 input parameters)

• discontinuities and large gradients

• strict requirements on model accuracy (for 95% of errors are less than 5%)

Challenges

Example of two-dimensional slice of 
function to approximate
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MACROS is a software toolkit for

• intelligent data analysis and

• multi-disciplinary optimization

developed by DATADVANCE llc.

Provides proprietary and state-of-the-art data analysis and optimization 

techniques and consists of Generic Tools for

• Dimension reduction

• Sensitivity Analysis

• Design of Experiments

• Construction of Surrogate Models

• Variable Fidelity Data Modeling

• Optimization

MACROS: a surrogate modeling and 
optimization software toolkit
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Results: Wing stress model

 Optimization of the wing 

lower and upper covers
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Results: Heavy Point optimization run

Smoother convergence with MACROS SM
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 A check of Reserve Factors was performed with the optimum based on
MACROS SM

Satisfactory accuracy for a pre-sizing result, according to AIRBUS experts and 
considering that a pre-sizing is always to be re-engineered including, for 
example, manufacturing constraints 
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Conclusions

 MACROS surrogate model gives high accuracy of
approximation

 MACROS surrogate model allows obtaining smoother
convergence in less iterations with a smoother distribution of
thickness/stringer dimensions and a small violation of constraints
which then could be easily repaired at the detailed design phase

 MACROS surrogate model provides expected reduction of
structure optimization computational time from several days to
a few hours.
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Examples of Surrogate Modeling Applications

 Problem 1: Surrogate Optimization of Wing Covers

 Problem 2: Surrogate Modeling of Thin Composite Plates
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Objective:

Approximate Reserve Factors (RFs) of thin composite plates as a functions of loads with smooth
and fast surrogate model

PRESTO Data Base:

• ~ 900 Gigabytes divided into catalogues

• Each catalogue is defined by a

specific stacking sequence

• Each catalogue contains for

different pairs of thickness

and area values of different

RFs depending on applied

forces

• For any new load RFs are evaluated using piecewise-linear interpolation

• too huge size of the PRESTO Data Base,

• non-smooth approximation

Problem statement

PROBLEM: 
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Requirements to Surrogate Models:

• relative prediction error is smaller than 5% for 95% of observations

• model size is at least 9-10 times smaller than the size of data base

• It should take no more than a few seconds to construct a new model

Problem statement

Test Case:
• 7 RFs

• 47 pairs of t, A

That is 329 models in total

For each (pair t, A + failure mode) training sample 

is defined as 

• inputs (DoE) = 2D grid of 23 x 45 = 1035 points

• outputs = values of the corresponding RF



31

©
 D

A
TA

D
V

A
N

C
E.

 A
ll 

ri
gh

ts
 r

es
er

ve
d.

  C
on

fid
en

ti
al

 a
nd

 p
ro

pr
ie

ta
ry

 d
oc

um
en

t. • nonlinear 2D/3D function

• discontinuities and large gradients

• strict limitations on model size,
model construction time and accuracy

Challenges

Examples of functions to 
approximate
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Algorithm

Steps of model construction:

1. Construct classifier for “nan” points

2. Transform data (box-cox transformation of y gives 
better accuracy)

3. Build separate model on filtered sample (“nan” 
points with y>100 removed) for each output 
using MACROS techniques TA/iTA

4. Merge separate models and classifier into one 
model for catalog (in form of C99 code)
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TCDB size

Comparison of TCDB size:

Size RFDB: 11553792 octets

Size MACROS surrogate: 1284480 octets

Ratio = RFDB / Surrogate ~ 9
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Comparison of RF values

Comparison of critical RF values

MACROS:

RFDB:
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Comparison of RF values

Comparison of critical RF types  (failure modes)

MACROS:

RFDB:
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Conclusions

Following activities are planned:

• Integration of MACROS surrogate modeling techniques into 

PRESTO (to allow construction of surrogate models on the side 

of LMS-SAMTECH)

• Research on approaches to reduction of design of experiments 

(to further reduce space storage size for the models)

Results of tests of MACROS surrogate model for CFRP fuselage 

stiffened panels (LMS-SAMTECH) showed that MACROS surrogate 

models give good accuracy with respect to the RF databases with a 

reduction factor of about 10 for the data storage. 

• Thus the use of MACROS is beneficial for data compression 

within PRESTO 


